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1. Introduction

Although in design codes we are forced to consider some

parameters or factors affecting structural behavior such as

deformations and stresses, there are more parameters that we

cannot consider them in routine designs; as an example

stiffness changes considering material deterioration.

Consequently there is a level of risk for lack of safety and

probable local or global failure of structure. On the other hand

structural aging, environmental impacts, and material

deteriorations affect the reliability and service life of

structures. In order to distinguish the current condition of

structures such as bridges engineers inspect, monitor and test

them at scheduled and occasional time intervals. Currently

health and performance of structures are mainly described by

subjective measures which are not identical to different

inspectors. In addition, defects, deterioration and damage of

the concrete bridge deck are not discovered until it is possible

to visually observe the signs they exhibit at which time these

would have taken their toll on health. These shortcomings

have direct influences on the decision making for maintaining

and repairing of structures. Moreover, even experienced

engineers may not be able to diagnose the causative

mechanisms of damage or deterioration correctly. The degree

of global health of a bridge as a structural system including the

performance criteria corresponding to the limit-states is

needed for effective decision making. Periodic inspections are

essential to monitor and measure deterioration rates of a

structure under normal operational situations.  Also occasional

inspections are obligatory whenever environmental attacks or

extreme events, such as strong earthquakes or hurricanes are

occurred. To quantify the performance of a structure it is

required to have a system to monitor and evaluate the integrity

of civil structures while in service [1]. 

Bridges are structures which can experience several types of

deteriorations and damages during their service lives. There

are many reasons for monitoring the current condition of a

bridge structure from health point of view. For example any

damage in some parts of a bridge has direct effect on its load

bearing capacity especially its vibration characteristics. In

other words damage can change the overall behavior of the

bridge under loads which cause the bridge to vibrate. Based on

this fact any method for damage detection which is capable of

showing the location and severity of damage can be
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considered useful for bridge maintenance and repair

departments [2]. 

Monitoring during service provides information on structural

behavior under predicted loads, and also registers the effects of

unpredicted overloadings. Data obtained by monitoring are

useful for damage detection, evaluation of safety and

determination of the residual capacity of structures. Early

damage detection is particularly important because it leads to

make appropriate decisions on time. If the damage is not

detected, it continues to propagate and the required structural

performance levels might not be guaranteed. Late detection of

damage results in higher refurbishment costs or, in some cases,

the structure has to be closed and dismantled. In seismic areas

the importance of monitoring is more crucial. Based on these

facts a structural health monitoring system with an embedded

module of damage detection is necessary to monitor structures

especially bridges. Among the attractive methods for damage

detection problems, artificial intelligence proposes some

applicable solutions.

2. Artificial intelligence for damage detection of
structures

As a branch of artificial intelligence soft computing is the

opposite of hard computing which is traditionally used for

many centuries. Soft computing was introduced by Zadeh in

the early 1990's [3]. Hard computing approaches model and

precisely analyze only relatively simple systems [4]. More

complex systems often remain intractable to conventional

mathematical and analytical methods. It should be pointed out

that simplicity and complexity of systems are relative, and

many conventional mathematical models have been both

challenging and very productive. But there are some attractive

and equally important points that should be considered in

solutions. There is a remarkable point that considering the

above mentioned solution approaches is not easy and

straightforward by traditional mathematical methods [4].

Contrary to hard computing, soft computing deals with

imprecision, uncertainty, partial truth, and approximation to

achieve tractability, robustness and low solution cost [5].

Components of soft computing are mainly Artificial Neural

Networks (ANN) and Fuzzy Logic (FL) [6]. These

components or techniques are intended to be complement of

each other. Another difference between hard and soft

computing is that unlike hard computing schemes, which

strive for exactness and full truth, soft computing 

techniques exploit the given tolerance of imprecision, partial

truth, and uncertainty for a particular problem [6]. A more

common contrast comes from the observation that inductive

reasoning plays a larger role in soft computing than in hard

computing.

Model updating approach is usually used in Bridge Health

Monitoring Systems. Model updating refers to the

methodology that determines the most plausible structural

model for an instrumented structural system given its

measured response and, possibly, its excitation [7]. This

approach is based on a finite element (parametric) structural

model. It means that there is some information about the

nature of the model [8-9]. Health monitoring techniques may

rely on nonparametric system identification approaches, in

which a priori information about the nature of the model is not

needed [10]. Nonparametric models can be used to detect

damage, although it is more difficult to use them for

localization of damage. Among the nonparametric

identification approaches that have been receiving growing

attention are Artificial Neural Networks [11, 12]. ANNs do not

require information concerning the phenomenological nature

of the system being investigated, and they also have fault

tolerance, which makes them a robust means for representing

model-unknown systems encountered in the real world. They

also do not require any prior knowledge of the system to be

identified. They can treat both linear and nonlinear systems

with the same formulation [13]. A number of investigators

have evaluated the suitability and capability of this network

for damage detection purpose [14-18]. ANNs are trained to

recognize the vibration response characteristics of healthy and

damaged structures in which the properties of individual

members are adjusted to reflect varying levels of damage [11,

12, 19-28]. The effectiveness of neural network methods is

determined by the completeness of original data library and

the reliability of algorithms. The neural network method may

be effective for the online monitoring of large structures, such

as cable-stayed and suspension bridges. 

As the second component of soft computing methods, fuzzy

logic is increasingly used for damage detection [29]. Fuzzy

logic systems can simulate human decision-making very well.

Fuzzy logic is applied as an approach to classify structural

damage using vibration data and fuzzy clustering [23, 30]. It is

also applicable for damage detection using natural frequencies

in the structures with uncertainties in structural properties as

well as measurement noise [31].

Third component of soft computing is a systematic hybrid of

the two previous components [32-33]. The most famous and

versatile method is Adaptive Neuro-Fuzzy Inference System

(ANFIS) [34]. Adaptive neuro-fuzzy inference system, which

is a method of modeling based on some available data,

discards the use of mathematical analytical models. Adaptive

neuro-fuzzy inference system is well-suited for complex

processes with many different inputs and output. In most cases

such problems are highly nonlinear and there is no simple

relationship among inputs and outputs.  ANFIS can be

considered as fuzzy inference method for data modeling. The

neuro-adaptive learning method works similarly to that of

neural networks. Neuro-adaptive learning techniques provide

a method for the fuzzy modeling procedure to learn

information about a data set.  This method is suited for a

system for which a collection of input/output data is available

and this collection is supposed to be used for modeling the

interrelation between input and output (I/O) data. The great

advantage of ANFIS is that there is no need to have a

predetermined model function or format relating I/O data to

each other. In ordinary fuzzy inference method it is required to

select membership functions based on the available I/O data.

In most cases it is too difficult to find out the best membership

functions only by looking at data. ANFIS has the capability of

using available I/O data to find the best membership functions.

The parameters associated with the membership functions

changes through the learning process. The computation of
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these parameters (or their adjustment) is facilitated by a

gradient vector. This gradient vector provides a measure of

how well the fuzzy inference system is modeling the I/O data

for a given set of parameters. When the gradient vector is

obtained, any of several optimization routines can be applied

in order to adjust the parameters to reduce some error measure.

This error measure is usually defined by the sum of the

squared difference between actual and desired outputs. ANFIS

uses either back propagation or a combination of least squares

estimation and back propagation for membership function

parameter estimation [35].

1.1. ANFIS Architecture 

ANFIS is a multilayer feed-forward network which uses

neural network learning algorithms and fuzzy reasoning to

map inputs into an output. It is a fuzzy inference system 

(FIS) implemented in the framework of adaptive neural

networks.

In order to explain ANFIS a fuzzy inference system with two

inputs x and y and one output z is considered [13]. In a first-

order Sugeno fuzzy model with two fuzzy if-then rules we

have: 

Rule 1: If x is A1 and y is B1, then f1=p1x+q1y+r1
Rule 2: If x is A2 and y is B2, then f2=p2x+q2y+r2

Figure 1 shows the reasoning procedure for the considered

Sugeno model. Figure 2 depicts the ANFIS architecture. As it

is shown nodes of the same layer have similar functions. The

output of the ith node in layer l is as Ol,i. 

Brief description of the different layers is given herein:

1.Layer 1: Every node i in this layer is an adaptive node with

a node function:

Ol,i=μAi(x),         for i=1, 2, or 
Ol,i=μBi-2(y),       for i=3, 4

where x (or y) is the input to node i and Ai (or Bi-2) is an

attribute associated with this node. In other words, Ol,i is the

membership grade of a fuzzy set A (= A1, A2, B1 or B2) and it

specifies the degree to which the given input x (or y) satisfies

the quantifier A. Here the membership function for A can be

any appropriate parameterized membership function such as

the generalized bell function: 

(1)

where {ai, bi, ci} is the premise parameters set. Changing the

values of these parameters leads to change of the bell-shaped

function. Therefore various forms of membership functions for

fuzzy set A are possible.

2. Layer 2: Every node in this layer is a fixed node labeled

Prod, whose output is the product of all the incoming signals: 

O2,i=wi = mAi (x) mBi (y) , i=1,2          (2)

Each node output represents the firing strength of a rule. In

general, any other T-norm operators that perform fuzzy AND

can be used as the node function in this layer.

3. Layer 3: Every node in this layer is a fixed node labeled

Norm. The ith node calculates the ratio of the ith rule's firing

strength to the sum of all rules' firing strengths: 

(3)

Outputs of this layer are called normalized firing strengths.

4. Layer 4: Every node i in this layer is an adaptive node with

a node function 

O4,i= ẁi fi= ẁi  (pix+qiy+ri)                                         (4)

where ẁi is a normalized firing strength from layer 3 and {pi,
qi, ri} is the parameter set of this node. Parameters in this layer

are referred to as consequent parameters.

5. Layer 5: The only node of this layer is a fixed node labeled

Sum, which computes the overall output as the summation of

all incoming signals: 

(5)

It can be observed that the ANFIS architecture has two

adaptive layers: Layers 1 and 4. Layer 1 has modifiable

parameters {ai,bi, ci} and {aj,bj, cj} related to the input MFs.

Layer 4 has modifiable parameters {pij,qij, rij} pertaining to the

first-order polynomial. The task of the learning algorithm for

this ANFIS architecture is to tune all the modifiable
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Fig. 1 A two-input first-order Sugeno fuzzy model with two rules Fig. 2 Equivalent ANFIS architecture



parameters to make the ANFIS output match the training data

[35]. Learning or adjusting these modifiable parameters is a

two-step process, which is known as the hybrid learning

algorithm [36]. In the forward pass of the hybrid learning

algorithm, the premise parameters are hold fixed, node outputs

go forward until Layer 4 and the consequent parameters are

identified by the least squares method. In the backward pass,

the consequent parameters are held fixed, the error signals

propagate backward and the premise parameters are updated

by the gradient descent method. The detailed algorithm and

mathematical background of the hybrid learning algorithm can

be found in [35-36].

The basic learning rule of ANFIS is the back propagation

gradient descent, which calculates error signals (defined as the

derivative of the squared error with respect to each node’s

output) recursively from the output layer backward to the input

nodes. This learning rule is exactly the same as the back-

propagation learning rule used in the common feed-forward

neural networks. From the ANFIS architecture shown in

Figure 1, it is observed that given the values of premise

parameters, the overall output f can be expressed as a linear

combination of the consequent parameters. On the basis of this

observation, a hybrid-learning rule is employed here, which

combines the gradient descent and the least-squares method to

find a feasible set of antecedent and consequent parameters.

The details of the hybrid rule are given in [13], where it is also

claimed to be significantly faster than the classical back-

propagation method.

There are two passes in the hybrid-learning procedure for

ANFIS. In the forward pass of the hybrid-learning algorithm,

functional signals go forward till layer 4 and the consequent

parameters are identified by the least-squares estimate. In the

backward pass, the error rates propagate backward and the

premise parameters are updated by the gradient descent. When

the values of the premise parameters are fixed, the overall

output can be expressed as a linear combination of the

consequent parameters

(6)

which is linear in the consequent parameters p1, q1, r1, p2, q2,
and r2 [35, 37-39]. A flowchart of hybrid learning procedure

for ANFIS is shown schematically in Figure 3.

3. ANFIS Modeling damage detection system for
concrete bridge deck

The main purpose of this paper is to introduce an easy-to-use

and reliable model for damage detection of a typical concrete

bridge deck. Among many different methods for damage

detection an adaptive neuro-fuzzy inference system is used in

modeling. This model uses the numerical values from the

virtual vibration tests obtained by finite element analysis of the

bridge deck with different damage scenarios. All the above

mentioned characteristics of ANFIS modeling method

concerning uncertainties in damage detection of a structure

show this method can be used in practice to find damaged

regions.

The practical method of structural damage detection is based

on the results of vibration test/simulation data. The

attractiveness of dynamic responses is due to this fact that we

are able to detect and locate damage by them. Damage

detection is based on the premise that damage in the structure

will cause changes in vibration data [41]. There has been a

large volume of research, extending over many decades,

devoted to vibration-based methods for damage identification

in structures [42]. The idea is that changes in the mechanical

properties of a structure, especially loss of stiffness caused by

cracking and other damage, result in measurable changes to

the vibration responses. Global vibration-based methods are

therefore still attractive for detecting damage where a priori

information is lacking. Moreover, considerable theoretical and

experimental progress has been made in the detection and

location of damage by dynamic methods [43-46]. Dynamic

responses are directly related to global behavior of structure

and they can provide rapid inspection of large structural

systems. Dynamic methods are based on the variations in

parameters in different domains/parts of structure under

investigation. These methods are called spatial-domain

methods [47]. Spatial-domain methods use changes of mass,

damping, and stiffness values to detect and locate damage. In

time domain method, system parameters are determined from

the observational data sampled in time. 

Model independent methods can detect the existence of

damage without much computational efforts, but they are not

accurate in locating damage [48]. On the other hand, model-

referenced methods are generally more accurate in locating

damage and require fewer sensors than model-independent

techniques, but they require appropriate structural models and

significant computational efforts [49-50]. Neural networks and
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Fig. 3 Hybrid learning procedure of ANFIS [18]

 



adaptive neuro-fuzzy inference system are recently considered

as good model-referenced methods for damage detection

systems. They are trained to recognize the vibration response

characteristics of healthy and damaged structures in which the

properties of individual members are adjusted to reflect varying

levels of damage [24-26, 15-18, 27-28, 32-33]. Usually a finite-

element model is used to develop failure patterns or damage

scenarios that are used to train a model-referenced method so

that it can later detect damage in the reference structure [21, 50]. 

Here in this paper some damage scenarios are introduced to

the finite element model. Figure 4 shows the finite element

mesh which is used for concrete bridge deck. The dimensions

of the concrete bridge deck are 6000*10000 mm. Its thickness

is 200 mm. Dimensions of each finite element is 500*500 mm.

This deck is simply supported at six points (three points at left

edge and three points at right edge). The 4-noded plate element

is employed for the finite element model of concrete bridge

deck. Concrete modulus of elasticity (E) and the Poisson’s

ratio (ν) used in numerical model are 21,000 MPa and 0.2,

respectively. The value of impact load for exciting deck at its

center is 5,000 N. Figure 5 illustrates nine different damage

scenarios which are used for simulations. Each scenario is

modeled by decreasing stiffness of the elements in the

damaged zone. Assigning smaller thickness for elements

results in decreased stiffness for them.

In real vibration tests accelerometers are used as sensors.

Here in simulations the sampled accelerations of nine specific

joints (A1 to A9 in Figure 6) of the finite element model are

considered as the results of virtual accelerometers. Sampled

accelerations mean that only some points of the

obtained/calculated signals are used for modeling ANFIS not

all of them. It is intentionally done to show that this method of

modeling is capable of showing damaged area relatively well

despite the lack of complete data. These incomplete sampled

accelerations are used to train the ANFIS model for damage

detection based on the different damage scenarios.

International Journal of Civil Engineering, Transaction A: Civil Engineering, Vol. 11 No. 3, September 2013174

Fig. 4 The finite-element mesh of concrete bridge deck (simply
supported at circle points)

Fig. 5 Nine scenarios for training the damaged detection system (Damaged areas are in white)

Fig. 6 Layout of virtual accelerometer locations and response signals
(nine accelerations at Ai points) from impact load at A5 (deck center)

 



Accelerations of the selected points of the deck which are

shown in Figure 6 are obtained by linear time history analysis.

Table 1 includes the virtual accelerometer coordinates

considered on the deck. 

Nine different damage scenarios are accounted for the

stiffness reduction of finite elements of the model at locations

where damage (cracks, voids and …) are considered on the

deck. Stiffness reduction is done by considering the smaller

thickness (180 mm) of the concrete deck. Table 2 contains the

center coordinates and dimensions of each damaged zone.

Finally nine different and independent training datasets of

accelerations corresponding to the nine damage scenarios are

produced by numerical simulations.

The obtained datasets contain acceleration responses of nine

virtual accelerometers (A1 to A9) as ANFIS inputs. Time

duration of the acceleration responses is 10 seconds recorded at

0.01 second intervals. The total number of each dataset is 1000.

Among this number of recorded data only 11 data records from

1 to 2 seconds at 0.1 second intervals are used to train the

ANFIS model. This selected sampled acceleration is only 1.1

percent of each complete obtained dataset. Other records of nine

virtual accelerometers are used to check the ability of damage

detecting of the proposed ANFIS model. Both the training and

testing datasets cover all levels and types of damage scenarios.

The outputs of the model are coordinates of the damaged

zone centers. Although ANFIS has many advantages there is a

disadvantage which limits the modeling features. It can be

used only for one output [36]. Here in this phase it is required

to predict x and y coordinates of the damaged zones. In order

to overcome this problem two ANFIS models are trained for

prediction of x and y separately.  The both ANFIS-X and

ANFIS-Y are built using triangular membership functions.

Figure 7 shows the proposed damage detection system.

3. Discussion of Results

The trained ANFIS-X and ANFIS-Y are validated by the

testing datasets. It means that the datasets which are not used

for training of the two ANFIS models are considered as the

nine input accelerations at A1 to A9 points for checking the

capability and power of damage detection of concrete bridge

deck. Figures 8 to 16 show the results of damage detection for
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Table 1 Virtual accelerometer coordinates considered on the deck

Virtual accelerometer 
designation 

Virtual accelerometer coordinates 
x (mm) y (mm) 

A1 2500 6000 
A2 5000 6000 
A3 7500 6000 
A4 2500 3000 
A5 5000 3000 
A6 7500 3000 
A7 2500 0 
A8 5000 0 
A9 7500 0 

Table 2 Center coordinates of each damaged zones

Damage zone 
designation 

Center of damaged zone Dimension of damaged zone 

x (mm) y (mm) x direction (mm) y direction (mm) 
DD1 1500 5000 2000 2000 
DD2 5000 5000 2000 2000 
DD3 8500 5000 2000 2000 
DD4 1500 3000 2000 2000 
DD5 5000 3000 2000 2000 
DD6 8500 3000 2000 2000 
DD7 1500 1000 2000 2000 
DD8 5000 1000 2000 2000 
DD9 8500 1000 2000 2000 

* Origin of the coordinate system is at the lower left corner of the deck.

* Origin of the coordinate system is at the lower left corner of the deck.
Fig. 9 Results of ANFIS damage detection model (damaged points)

for damage scenario No. 2 (DD2)
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Fig. 7 The proposed damage detection system

 

Fig. 8 Results of ANFIS damage detection model (damaged points)
for damage scenario No. 1 (DD1)
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nine damage scenarios by the proposed system.

Above figures contain some information from calculated

results. The scattered result points show at worst the one-

fourth area of the deck which contains the damaged region

introduced in the considered scenarios. Therefore the proposed

ANFIS model can be used for decreasing the time and effort of

inspectors to find the damaged area in practice. There are some

distinct findings from the obtained results. 

Results do not show exactly the center of the damaged

zones. Predicted center points of damage zone are scattered

around the damaged zone but are almost close to them. It can

be detected the line in which the center of damage is situated

or greater zone than the damaged area (approximately ¼ of

deck). With more attention it becomes obvious that if the
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Fig. 13 Results of ANFIS damage detection model for (damaged
points) damage scenario No. 6 (DD6)
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Fig. 12 Results of ANFIS damage detection model for (damaged
points) damage scenario No. 5 (DD5)
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Fig. 11 Results of ANFIS damage detection model for (damaged
points) damage scenario No. 4 (DD4)
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Fig. 10 Results of ANFIS damage detection model (damaged
points) for damage scenario No. 3 (DD3)
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Fig. 16 Results of ANFIS damage detection model for (damaged
points) damage scenario No. 9 (DD9)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

x (mm)

y 
(m

m
)

 

 

 
y = - 0.69*x + 6.5e+003

Fig. 15 Results of ANFIS damage detection model for (damaged
points) damage scenario No. 8 (DD8)
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Fig. 14 Results of ANFIS damage detection model for (damaged
points) damage scenario No. 7 (DD7)
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damaged zone is on the symmetrical axis of the deck these

scattered points come across it. There are no scattered points

anymore. In other cases which the damaged zones are not on

the symmetrical axes, scattered points show the overall

direction and possible region of the damaged zone

approximately. As a systematic approach it is

recommendable to use these scattered points to calculate the

best line which passes through them by the regression

analysis. This line is very close to the center of the damaged

zone and also shows its possible location in sub-deck

regions.

Another finding is that there are many points around the

center of the deck because it is the most flexible part of the

deck and can be easily excited by the impact load. There is

only one case that all predicted points are congested at the

center. This case is corresponding to the damage at the center.

If damaged zone is not at the center, there is a stretch of the

predicted points to that damaged zone. This means that deck

center is not the damaged zone but since it can be easily

excited there are many points around it.

Based on the above mentioned findings it is possible to

provide some simple rules for damage detection procedure by

the proposed model:

1. At first ANFIS model is used for finding the predicted

points of damaged deck. Inputs of the ANFIS are accelerations

at points A1 to A9.

2. If predicted points are close to each other and at the center

of the deck it is obvious that damaged zone is at the center of

the deck.

3. Otherwise by the regression analysis the obtained line

shows that the center of the damaged zone is very close to this

line and is in the direction from deck center to the scattered

points.

Table 3 shows the distance of the damaged zone center

from the regression line in each scenario. The results

summarized in Table 3 show that deviation of the real center

of damaged zone from the predicted point on the regression

line is very small and this line passes through the damaged

zone as well. Findings show that the proposed model can be

used in diagnosis of pre-introduced damaged zones very

well. It may be notified that the biggest advantage of this

model is that there is no need to know about the undamaged

concrete bridge deck and calculate frequencies and mode

shapes changes to find damage location. Some of the

existing models need this calculation [43]. There is not any

obligation to compare the damaged deck with the

undamaged deck to gain information about the damaged

zone or its location. 

In order to verify the proposed model and the recommended

three steps of diagnosis of damaged zone a few other damage

scenarios which are not used in ANFIS training stage are

considered for testing. Six typical different damage scenarios

are defined. These new damage scenarios are different from

the damage scenarios used for training of ANFIS model not

only for damage locations but also for their areas. Figure 17

depicts these scenarios. Table 4 contains the information

related to them. 

Following simulated vibration tests by linear time history

analysis, the damage detection system is used to find out if

these new scenarios which are not the same as the training

scenarios are detectable. Figures 18 to 23 show the simulation

results on the deck for different new scenarios. Keeping in
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Table 3 Distance of the damaged zone centers of different scenarios
from the corresponding regression lines

Damage 
zone 

designation 
Regression line 

Center of 
damaged zone 

Distance of the center 
of damaged zone from 
regression line (mm) X (mm) Y (mm) 

DD1 y=-0.69x+6500 1500 5000 382.73 
DD2 y=120x-610000 5000 5000 125 
DD3 y=0.69x-480 8500 5000 316.89 
DD4 y=0.00000052x+3000 1500 3000 0.00078 
DD5 y=0.6x+0.12 5000 3000 0.1029 
DD6 y=0.0000017x+3000 8500 3000 0.0145 
DD7 y=0.69x-460 1500 1000 349.81 
DD8 y=-120x+610000 5000 1000 75 
DD9 y=-0.69x+6500 8500 1000 300.42 

Table 4 Center coordinates of testing damaged zones

Damage zone 
designation 

Center of 
damaged zone 

Dimension of 
damaged zone 

x (mm) y (mm) 
x direction 

(mm) 
y direction 

(mm) 
DDa 2750 3750 2500 2500 
DDb 8250 4250 500 500 
DDc 6500 1000 1000 1000 
DDd 3750 1750 5500 3500 
DDe 3000 5750 3000 500 
DDf 9750 4500 500 2000 

Fig 17 Six scenarios for testing/verifying the damaged detection system



mind that these new scenarios are not used in training ANFIS

model, the proposed method shows relatively well the ¼-deck

region including defined damaged zone. Regression lines of

the result points bypass the center of this zone. These findings

show the power of the proposed system in finding the ¼-

region of the deck containing damaged zone.

Good detections by ANFIS system suggest that by a 

number of very simple training scenarios system has learned

to discover other scenarios as well. This is the most

advantageous capability of the proposed ANFIS system. In

other words it can generalize its ability for damage 

detection for different cases. Table 5 shows the distance of the

damaged zone center from the line of regression for each

scenario. It shows that deviation of the real center of damaged

zone from the regression line is pretty small except for DDc

and this line passes through some of the damaged zones, too.

It can be used to help bridge inspectors to focus on some

specific parts of the bridge looking for damaged areas.

Another advantage of this model is that it is very simple to

use: only a few results of the accelerometers are needed to be

used as inputs. System output is the center of the damaged

zone without any comparison with benchmark structural

model. Based on the above findings and discussion it is

decided to enhance the capability of this model by introducing

more damage scenarios with more damaged zones at a time.

This will be the next step for the development of the system
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Fig. 21 Results of ANFIS damage detection model for (damaged
points) damage scenario DDd
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Fig. 20 Results of ANFIS damage detection model for (damaged
points) damage scenario DDc
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Fig. 19 Results of ANFIS damage detection model for (damaged
points) damage scenario DDb
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11. Results of ANFIS damage detection model for (damaged points) damage scenario N

Fig. 18 Results of ANFIS damage detection model for (damaged
points) damage scenario DDa
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Fig. 23 Results of ANFIS damage detection model for (damaged
points) damage scenario DDf

17. Six scenarios for testing/verifying the damaged detection system 

Fig. 22 Results of ANFIS damage detection model for (damaged
points) damage scenario DDe
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in the near future.

As mentioned earlier the main benefit of the proposed

ANFIS system is the avoidance of building an 

analytical concrete bridge deck model. Therefore, time and

resources are saved and there is a moderate independence

from the bridge experts, too. A great advantage of the

ANFIS is that it does not face a problem when dealing with

noisy or sparse data [51]. In the case that there is a need for

systems modifications or for the additions of new

functionalities, or for changes on the type and on the number

of inputs, then the ANFIS is capable to treat any other inputs

with the minimum adaptations on the networks topology and

on the formulation. This means that the proposed ANFIS

system is flexible enough to be adapted to new conditions.

Therefore it may be possible to use more and less

accelerometers with minimum effort of changing the ANFIS

system.

Dealing with variation in the observations, especially when

damage detection is related to the inspectors' experience, is

very important and time consuming [52]. The statistical

averaging by calculation of the regression line aims to provide

predictions that exhibit increased confidence and reliability.

This is mainly the reason to carry out regression analysis to

find the best line showing the possible damaged zone location.

Below, the advantages of the proposed system are mentioned,

by focusing on two key factors that address the system itself;

namely the prediction accuracy, and the timely systems

response.

The first key factor to evaluate is the systems prediction

accuracy. By considering all the data used for damage

scenarios, the average prediction is practically be used in

many cases. It is important to mention that the average

performance of the proposed ANFIS system has a value with

indicative and not absolute importance, because it depends on

generated data by simulation not some selected data. The

acceptable degree of the prediction accuracy would guarantee

the correct diagnostic decisions, during the bridge damage

detection process.

The second system factor to be discussed is the time

duration for the system response. After verification and

finalizing the ANFIS system it provides reasonably 

accurate results in a very short time. It is a main characteristic

of any ANFIS model [35]. Therefore, the damage detection

system is reliable and responds reasonably fast to incorporate

into some practical applications of bridge management

systems (BMS). Especially it is inferable that the proposed

model can be implemented in real-time or online systems of

damage detection modules for Bridge Health Monitoring

Systems.  

4. Conclusions

As an important functionality of Bridge Health Monitoring

System damage detection is a challenging task of maintenance

and repair departments. Therefore, damage detection system

can be a good tool for reducing cost and time. In this paper an

adaptive neuro-fuzzy inference system is developed for

damage detection of the concrete bridge deck. The damage

detection system is proposed for a simulated concrete bridge

deck which is excited by an impact load at its center. The

proposed ANFIS model learns the if–then rules between

sampled simulated accelerations at some predefined points on

the deck and center of the damaged zone. It learns and

memorizes the patterns between them for generalization and

prediction goals. 

Based on the simulations by finite element analyses

following main conclusions are made.

1. The proposed system does not require an analytical model

of the concrete bridge deck because the trained ANFIS creates

a model-referenced system for damage detection.

2. In the proposed ANFIS damage detection model, sampled

(not complete) acceleration signals are used as inputs but the

most possible region of the deck including damage is found.

3. There is no need to calculate frequencies and mode shapes

of the deck as vibration signatures compared to some of the

existing damage detection methods.

4. Compared to the alternate methods, proposed ANFIS

system exhibits significant advantages; to decrease the time

and effort of bridge inspectors to find damaged area by looking

for it in sub-deck regions. It does not show the damaged area

exactly but can show sub-deck areas which include damaged

zone. 

5. The proposed system can almost detect damaged areas

which are different from the scenarios used for its training.

This suggests that it has the capability to generalize its power

of damage detection.

6. The response of the proposed method is so fast that it can

be integrated in real time damage detection modules of Bridge

Health Monitoring Systems.

7. The proposed system can serve as an expert to help bridge

inspectors looking for damage in special areas of the deck in a

short time.
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